Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(7): 3044-3054, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36991130

RESUMO

Neuropathological mechanisms of manic syndrome or manic episodes in bipolar disorder remain poorly characterised, as the research progress is severely limited by the paucity of appropriate animal models. Here we developed a novel mania mice model by combining a series of chronic unpredictable rhythm disturbances (CURD), which include disruption of circadian rhythm, sleep deprivation, exposure to cone light, with subsequent interference of followed spotlight, stroboscopic illumination, high-temperature stress, noise disturbance and foot shock. Multiple behavioural and cell biology tests comparing the CURD-model with healthy controls and depressed mice were deployed to validate the model. The manic mice were also tested for the pharmacological effects of various medicinal agents used for treating mania. Finally, we compared plasma indicators of the CURD-model mice and the patients with the manic syndrome. The CURD protocol produced a phenotype replicating manic syndrome. Mice exposed to CURD presented manic behaviours similar to that observed in the amphetamine manic model. These behaviours were distinct from depressive-like behaviours recorded in mice treated with a depression-inducing protocol of chronic unpredictable mild restraint (CUMR). Functional and molecular indicators in the CURD mania model showed multiple similarities with patients with manic syndrome. Treatment with LiCl and valproic acid resulted in behavioural improvements and recovery of molecular indicators. A novel manic mice model induced by environmental stressors and free from genetic or pharmacological interventions is a valuable tool for research into pathological mechanisms of mania.


Assuntos
Transtorno Bipolar , Mania , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Ácido Valproico , Privação do Sono
2.
J Psychiatr Res ; 161: 188-198, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933445

RESUMO

Posttraumatic stress disorder (PTSD) is very common after exposure to trauma, mental stress or violence. Because objective biological markers for PTSD are lacking, exactly diagnosing PTSD is a challenge for clinical psychologists. In-depth research on the pathogenesis of PTSD is a key for solving this problem. In this work, we used male Thy1-YFP transgenic mice, in which neurons are fluorescently labeled, to research the effects of PTSD on neurons in vivo. We initially discovered that pathological stress associated with PTSD increased the activation of glycogen synthesis kinase-beta (GSK-3ß) in neurons and induced the translocation of the transcription factor forkhead box-class O3a (FoxO3a) from the cytoplasm to the nucleus, which decreased the expression of uncoupling protein 2 (UCP2) and increased mitochondrial production of reactive oxygen species (ROS) to trigger neuronal apoptosis in the prefrontal cortex (PFC). Furthermore, the PTSD model mice showed increased freezing and anxiety-like behaviors and more severe decrease of memory and exploratory behavior. Additionally, leptin attenuated neuronal apoptosis by increasing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which further elevated the expression of UCP2 and inhibited the mitochondrial production of ROS induced by PTSD, thus reducing neuronal apoptosis and ameliorating PTSD-related behaviors. Our study is expected to promote the exploration of PTSD-related pathogenesis in neural cells and the clinical effectiveness of leptin for PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Camundongos , Masculino , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Leptina , Camundongos Transgênicos , Espécies Reativas de Oxigênio , Glicogênio Sintase Quinase 3 beta
3.
Neurochem Res ; 48(4): 1180-1190, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35750877

RESUMO

Accumulating evidence suggests that the activation of nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome contributes to the pathophysiology of post-traumatic stress disorder (PTSD). Astrocytes, the homeostatic cells of the central nervous system are intimately involved into pathophysiology of various mental disorders including PTSD. We demonstrated previously that leptin exerts neuroprotection and ameliorates chronic sleep deprivation-induced depressive-like behaviours. Here, we extended the study of therapeutic effects of leptin to PTSD model mice. We discovered that PTSD is associated with significant activation of NLRP3 inflammasome in astrocytes sorted from GFAP-GFP transgenic mice, while administration of leptin markedly suppressed the activation of astrocytic NLRP3 inflammasome. Leptin effectively improved PTSD-associated behavioural alterations including fear memory, cognitive impairments, and depressive-like behaviours. Therapeutic effects of leptin were mediated by the signal transducer and activator of transcription 3 (STAT3) in astrocytes. In addition, the PTSD-related activation of NLRP3 inflammasome impairs astrocytic mitochondria suppressing ATP synthesis and leading to an increased ROS production. Leptin reversed mitochondrial inhibition by stimulating STAT3 in astrocytes. We propose leptin as a novel candidate for the pharmacological treatment of PTSD.


Assuntos
Inflamassomos , Transtornos de Estresse Pós-Traumáticos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Astrócitos , Leptina , Medo
4.
Front Aging Neurosci ; 14: 873697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547631

RESUMO

The glymphatic system, a recently discovered macroscopic waste removal system in the brain, has many unknown aspects, especially its driving forces and relationship with sleep, and thus further explorations of the relationship between the glymphatic system and a variety of possible related diseases are urgently needed. Here, we focus on the progress in current research on the role of the glymphatic system in several common central nervous system diseases and mood disorders, discuss the structural and functional abnormalities of the glymphatic system which may occur before or during the pathophysiological progress and the possible underlying mechanisms. We emphasize the relationship between sleep and the glymphatic system under pathological conditions and summarize the common imaging techniques for the glymphatic system currently available. The perfection of the glymphatic system hypothesis and the exploration of the effects of aging and endocrine factors on the central and peripheral regulatory pathways through the glymphatic system still require exploration in the future.

5.
Cell Death Dis ; 13(4): 406, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468877

RESUMO

Alzheimer's disease (AD) is the prevalent cause of dementia in the ageing world population. Apolipoprotein E4 (ApoE4) allele is the key genetic risk factor for AD, although the mechanisms linking ApoE4 with neurocognitive impairments and aberrant metabolism remains to be fully characterised. We discovered a significant increase in the ApoE4 content of serum exosomes in old healthy subjects and AD patients carrying ApoE4 allele as compared with healthy adults. Elevated exosomal ApoE4 demonstrated significant inverse correlation with serum level of thyroid hormones and cognitive function. We analysed effects of ApoE4-containing peripheral exosomes on neural cells and neurological outputs in aged or thyroidectomised young mice. Ageing-associated hypothyroidism as well as acute thyroidectomy augmented transport of liver-derived ApoE4 reach exosomes into the brain, where ApoE4 activated nucleotide-binding oligomerisation domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome by increasing cholesterol level in neural cells. This, in turn, affected cognition, locomotion and mood. Our study reveals pathological potential of exosomes-mediated relocation of ApoE4 from the periphery to the brain, this process can represent potential therapeutic target.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Exossomos , Idoso , Envelhecimento , Doença de Alzheimer/metabolismo , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Exossomos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Glândula Tireoide/metabolismo
6.
Neurosci Bull ; 38(8): 953-965, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35349095

RESUMO

Although posttraumatic stress disorder (PTSD) is on the rise, traumatic events and their consequences are often hidden or minimized by patients for reasons linked to PTSD itself. Traumatic experiences can be broadly classified into mental stress (MS) and traumatic brain injury (TBI), but the cellular mechanisms of MS- or TBI-induced PTSD remain unknown. Recent evidence has shown that the morphological remodeling of astrocytes accompanies and arguably contributes to fearful memories and stress-related disorders. In this review, we summarize the roles of astrocytes in the pathogenesis of MS-PTSD and TBI-PTSD. Astrocytes synthesize and secrete neurotrophic, pro- and anti-inflammatory factors and regulate the microenvironment of the nervous tissue through metabolic pathways, ionostatic control, and homeostatic clearance of neurotransmitters. Stress or trauma-associated impairment of these vital astrocytic functions contribute to the pathophysiological evolution of PTSD and may present therapeutic targets.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos de Estresse Pós-Traumáticos , Astrócitos , Medo , Humanos , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/terapia
7.
Commun Biol ; 5(1): 105, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115638

RESUMO

Stroke causes degeneration and death of neurones leading to the loss of motor function and frequent occurrence of cognitive impairment and depression. Lithium (Li+), the archetypal mood stabiliser, is neuroprotective in animal models of stroke, albeit underlying mechanisms remain unknown. We discover that Li+ inhibits activation of nucleotide-binding oligomerisation domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes in the middle cerebral artery occlusion (MCAO) stroke model in mice. This action of Li+ is mediated by two signalling pathways of AKT/GSK3ß/ß-catenin and AKT/FoxO3a/ß-catenin which converge in suppressing the production of reactive oxygen species (ROS). Using immunocytochemstry, MRI imaging, and cell sorting with subsequent mRNA and protein quantification, we demonstrate that Li+ decreases the infarct volume, improves motor function, and alleviates associated cognitive and depressive impairments. In conclusion, this study reveals molecular mechanisms of Li+ neuroprotection during brain ischaemia, thus providing the theoretical background to extend clinical applications of Li+ for treatment of ischemic stroke.


Assuntos
AVC Isquêmico/tratamento farmacológico , Lítio/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Disfunção Cognitiva/tratamento farmacológico , Depressão/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , AVC Isquêmico/patologia , Masculino , Camundongos , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória
8.
Commun Biol ; 4(1): 525, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953326

RESUMO

Iron is the fundamental element for numerous physiological functions. Plasmalemmal divalent metal ion transporter 1 (DMT1) is responsible for cellular uptake of ferrous (Fe2+), whereas transferrin receptors (TFR) carry transferrin (TF)-bound ferric (Fe3+). In this study we performed detailed analysis of the action of Fe ions on cytoplasmic free calcium ion concentration ([Ca2+]i) in astrocytes. Administration of Fe2+ or Fe3+ in µM concentrations evoked [Ca2+]i in astrocytes in vitro and in vivo. Iron ions trigger increase in [Ca2+]i through two distinct molecular cascades. Uptake of Fe2+ by DMT1 inhibits astroglial Na+-K+-ATPase, which leads to elevation in cytoplasmic Na+ concentration, thus reversing Na+/Ca2+ exchanger and thereby generating Ca2+ influx. Uptake of Fe3+ by TF-TFR stimulates phospholipase C to produce inositol 1,4,5-trisphosphate (InsP3), thus triggering InsP3 receptor-mediated Ca2+ release from endoplasmic reticulum. In summary, these findings reveal the mechanisms of iron-induced astrocytic signalling operational in conditions of iron overload.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Compostos Férricos/farmacologia , Compostos Ferrosos/farmacologia , Receptores da Transferrina/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Transporte Biológico , Camundongos , Camundongos Endogâmicos C57BL , Sódio/metabolismo
9.
Function (Oxf) ; 2(2): zqab003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35330817

RESUMO

Metal implants are used worldwide, with millions of nails, plates, and fixtures grafted during orthopedic surgeries. Iron is the most common element of these metal implants. As time passes, implants can be corroded and iron can be released. Ionized iron permeates the surrounding tissues and enters circulation; importantly, iron ions pass through the blood-brain barrier. Can iron from implants represent a risk factor for neurological diseases? This remains an unanswered question. In this study, we discovered that patients with metal implants delivered through orthopedic surgeries have higher incidence of Parkinson's disease or ischemic stroke compared to patients who underwent similar surgeries but did not have implants. Concentration of serum iron and ferritin was increased in subjects with metal implants. In experiments in vivo, we found that injection of iron dextran selectively decreased the presence of divalent metal transporter 1 (DMT1) in neurons through increasing the expression of Ndfip1, which degrades DMT1 and does not exist in glial cells. At the same time, excess of iron increased expression of DMT1 in astrocytes and microglial cells and triggered reactive astrogliosis and microgliosis. Facing the attack of excess iron, glial cells act as neuroprotectors to accumulate more extracellular iron by upregulating DMT1, whereas neurons limit iron uptake through increasing DMT1 degradation. Cerebral accumulation of iron in animals is associated with impaired cognition, locomotion, and mood. Excess iron from surgical implants thus can affect neural cells and may be regarded as a risk factor for neurodegeneration.


Assuntos
Ferro , Neurônios , Animais , Ferro/metabolismo , Neurônios/metabolismo , Neuroglia/metabolismo , Barreira Hematoencefálica/metabolismo , Doença Iatrogênica
10.
Sensors (Basel) ; 16(8)2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27548168

RESUMO

As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research.


Assuntos
Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto/métodos , Solo/química , Água/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...